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Dilution of nematic surface potentials: Statics
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The weak anchoring of a nematic liquid crystal is further illuminated by studying the consequences of
finite-range surface torques. It is shown that the actual decay law of a diluted surface potential has little
influence on either the equilibrium profile and the saturation field, provided that the range of the potential is
small compared to the surface extrapolation length. This appears as a possible way to extend the conventional
Rapini-Papoular model without altering its predictions away from the boundary. The net advantage of a
dilution model is to better understand surface phenomena, which indeed pertain to a thin boundary layer.

PACS numbegs): 61.30—v, 68.10.Cr

[. INTRODUCTION degree of biaxiality, and we take the scalar order parameter
as constant throughout the material. After describing the gen-
Surface anchoring of nematic liquid crystals plays an im-eral form of surface potentials, we essentially focus attention
portant role in both the statics and dynamics in the bulkon long-range interactions in the case of weak anchoring.
Thus, it is no wonder that it was studied rather e@tlly and  This amounts to requiring the surface extrapolation lehgth
both the strength of the surface potential and its dependende be much larger than the dilution lendtidefined in terms
on the director orientation at a bounding surface have beeaf the (arbitrary decay law for the surface torques in the
determined experimentally. A phenomenological model forbulk. In this setting, a surface layer can be clearly identified,
the dynamic evolution at the surface has also been proposedhose thickness is comparable with Thus, thead hoc
[2,3], which introduces aurface viscositys the product of a boundary layer introduced ifv] turns out to be fully justi-
typical bulk viscosity times aurface lengthThe interest in  fied.
these topics has been renewed by some recent experiments.The existence of this surface layer with its own dynamics
Measurements indeed yielded estimates for both the surfade the main interest of this approach. The dilution model
viscosity and the corresponding surface length however, indeed deploys its full potential in dynamics, to which a
they are inconsistent with the fast switching times that seerfuture papef12] will be entirely devoted, but it also raises a
to be involved in a surface bistable devicg6]. few central issues in statics, which need to be resolved to
In an attempt to explain the experimental evidence and tanake this theory well grounded. We wonder, in particular,
justify the phenomenological surface viscosity, a hydrody-whether the effects of a surface potential are independent of
namic model has been put forward, based on the idea thélte details of the decay law. To explore this, we consider a
surface actions are diluted in a thin boundary lady@r This  semi-infinite liquid crystal cell subject to different surface
allows one to treat surface effects within a continuum theorypotentials in a broad class. We find that for weak anchoring,
where the surface viscosity results from a dissipation procesthat is, whenh/L<1, the orientation at the surface and the
of the bulk, though mainly localized near the bounding sur-saturation field strength are independent of the actual dilu-
faces. According to this model, the phenomenological surtion law. In this case, our results coincide with those already
face length is actually comparable to the thickness of thdound within the classical Rapini-Papoular model. The very
boundary layer. novelty here is that a whole class of dilution laws are actu-
Several specific aspects of finite-range surface potentialglly consistent with the old model, for which all surface ef-
have already been studied in the past. For example, the restificts are sharply localized. The differences between these
of combining a van der Waals interaction with a localizedmodels become significant only in the thin boundary layer:
torque has been explored, both when these interactions favarhenever this matters, the classical model is simply not ap-
the same orientatiofi8] and when they compete with one plicable.
another[9]. Different specific long-range potentials have Here is the outline of this paper. In Sec. Il, both the di-
been considered, such as the onglid], and a density func- luted potential and the dilution length are defined. In Sec. IlI,
tional approach has also shown that deviations from uniaxithe Euler-Lagrange equation for a semi-infinite cell in an
ality close to the surface can be of importari@d]. These external field is derived along with the appropriate boundary
contributions, however, all being special in some way, do notondition on the supporting plate. In Sec. IV, we obtain an
reveal any general aspect that different diluted surface potempproximate expression for the boundary orientation, which
tials could have in common. is independent of the actual shape of the dilution function: in
In this paper we aim at a general description of surfacdhe case where the preferred surface direction and the exter-
potentials, which may include both short- and long-rangenal field are at right angles, this also allows us to estimate the
contributions. We are concerned with the consequences s@aturationfield, that is, the electric field required to com-
introducing such potentials within the classical directorpletely break the surface anchoring. Numerical results ob-
theory, and less so with a specific microscopic motivation fortained for both an exponential dilution law and a van der
the interactions behind them. As [7], we disregard any Waals surface potential show that this estimate is valid even
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when h is comparable td_. In Sec. V, we show that the Furthermore, wheneved is a decreasing function, it also

model of surface anchoring studied in this paper properhobeys

extends the classical model of Rapini and Papoular. To ease

the comparison, we briefly recall both the equilibrium equa- d(0)=3. (6)

tion and the boundary condition used in that model to de-

scribe the same problem addressed here. We show that tk&ee the Appendix for a formal prof.

saturation field remains unchanged, whereas the equilibrium It should be noted that the usual localized potential is

configuration within the surface layer is simply inaccessiblerecovered in this setting by taking a Dirac delta distribution

In the last section we collect the main conclusions reached ias dilution function:D(z) =Ad(z). The surface energy then

this paper. becomesFs= (A/2)f(9(0)), and the dilution lengtth van-
ishes; accordingly, the common surface extrapolation length

Il. SURFACE ENERGY L is defined as

We consider a nematic liquid crystal in the half space K
=0 with a single wall az=0. The influence of the surface is = ()
thought of as being diluted in a thin layer adjacent to the

boundary. The surface free energy per unit area is then g|ve\we shall see below that this definition also makes sense for

the form a diluted potential.
% In general, we consider smooth distributions of surface
75%] D(2)F(n(2)-ny)dz, (1)  torques in the volume: for a given total strengththe cor-

0 responding dilution lengtlih measures the thickness of the
boundary layer where the surface torques are effectively con-
fined. We regarch throughout as small compared to As
h%mwn below, under this assumption the main outcomes of
our model are independent of the specific details of the dilu-
tion function.

As an example, we rephrase in this general setting one of
the specific models already proposed in the literature.
%;)ubois-VioIette and De Gennes considered8ha nematic
Iquid crystal separated from the supporting substrate by a
layer of a vitreous polymer of thickness which occupies
the strip—a<z=<0. The substrate exerts on the nematic di-
rector a van der Waals torque with strend@@hthat decays
according to the law

wheren denotes the nematic directar, is a given unit vec-
tor indicating a preferred direction of the surfade,is a
scalar-valued function representing the dependence of t
energy on the orientation, arid(z) is the strength of the
surface potential at the point with coordinateelative to the
anchoring wall. We assume th&tis so normalized as to
range in the interval0,1]. In the following we restrict the
director to a plane perpendicular to the anchoring plate s
that the orientation can be described by a single arfple
(specifically, the angle that makes with the plaje and we
set F(n-ng=:f(9). For example, f(9)=sirf(9—39y),
where Js is the preferred angle at the boundary.

Starting from Eq(1), one can define a total strenghhof
the anchoring by lettingr=1:

C\
. D(2)= -,
A::J’ D(z)dz 2 (Aa+z)(z+a)
0
whereC is a constant depending on the dielectric constants
accordingly, a characteristilution lengthis given by of the substrate, the liquid crystal, and the medium between
. them, while\ is a characteristic length that can be estimated
f zD(z)dz from the ratio between the nonretarded and retarded van der
0 Waals potentials. It is further assumed[8] that the pre-

h=—2 ' 3 ferred orientation at the boundary i5,=0 and the angular
J D(z)dz dependence is given bf=sir’ 9. According to definition
0 (2), we compute the total strength of this potential and

With these definitions the surface energy can be rewritten ad€termine the corresponding extrapolation lerigias

]—‘—ifmd(z)f(f}(z))dz LC _ !
* 2hJo , KN?  a?/2—a+In(1+ oz)’
where where a:=\/a. This formula coincides with(3.6) of [8],
h which was obtained there from a different definition Lof
d(z):=—D(z) (4) based on an estimate of the asymptotic behavior of the solu-
A tion to the equilibrium equation for the director field. Like-

is the dimensionlesdilution functionthat satisfies wise, we compute the dilution length

focd dzeh 5 h @?2+ a—(1+ a)In(1+ ) ®
— :a L
0 (Z)dz=h. ©® @?2— a+In(1+a)
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which is a strictly increasing function af, ranging froma/2  vails over the latter, whereas close to the plate it fails to do
to a. No counterpart of Eq(8) is present in8], because no so, provided that the surface anchoring is not so weak as to
boundary layer was properly defined there, though theréosethe nematic directon.

were indirect indications of its existence. We remark that for By Eqgs.(9) and(10), the total free energy of the system

the nonretarded potential considered[8] the proper ex- can be written as

trapolation length. can also be defined as in E). How-
ever, the agreement between the two extrapolation lengths
fails in the case of strong anchoring, where the length de-
fined in[8] may even become negative. This corresponds to
a virtual boundary plate the bulk, a case which need not be K [
treated here. ) J 0

J—'[ﬁ]=%J'0w K(ﬁ’)2+saE2cos’-ﬁ+%d(z)sin20)dz

dz,

(ﬁ’)2+§co§ sz—éd(z)sin2 b

IIl. COMPETITION AGAINST A FIELD (1D

To illustrate better the relevance to the Oseen-Frank equivhere two distinct coherence lengths have been introduced,
librium theory of a model where the surface torques are ac-

tually diluted in space, we study a simple problem with sev- Egi= K_h (12)

eral possible applications, where an external electric field A

competes against the preferred anchoring at the wall. This

problem is well understood within the Rapini-Papoular"

model, and we recall the classical results below in Sec. V to 1 /K

compare them to our findings. §e==—\ﬁ, (13)
The Oseen-Frank elastic free-energy density for the nem- E Ve,

atic director is given by13,14 the former for the surface field and the latter for the electric

field. The surface extrapolation lengthis found to be re-

W=3Ki(V-n)?+3Ko[n- (VXN P4 3Ka[nX (VX ]2, to£, through

whereK,, K,, and K3 are the elastic constants for splay, §§:Lh.
twist, and bend deformations, respectively. If the director is
bound to a plane perpendicular to the plate, only splay anéHere we takeh<L, which means that the anchoring on the
bend deformations are relevant. Since usully=K;=:K, plate is sufficientlyweak The three surface lengths &,
we apply the one-constant approximation and reddce andL are then ordered as followh<<&,<L.
Any conceivable dilution function has to decay to 0 at
K , Ko, infinity so as to be integrable over the whole half I 0.
W= E(V”) :E(ﬂ ) 9 Moreover, for the energy functionaf in Eq. (12) to be fi-
nite, 9 must obey both asymptotic conditions

with 9 the in-plane angle as defined in Sec. Il and the prime

denoting differentiation with respect @ The densities per lim 9(z)= T (148
unit volume of both the surface energy and the electric en- z— 2
ergy are given by )
lim 9'(z)=0. (14b)
A Z— %
Wszﬁd(z)smz(ﬁ— ds) (103 51 the other hand, since no anchoring is actually concen-
trated atz=0, no condition ford can either be requested
s there.
We:?aEz SIn(9—Je), (10b Calculating the first variation ofF only subject to Egs.
(14) yields both the Euler-Lagrange equation,
respectively, where,>0 is the dielectric anisotropy in SI diz) 1
units. The electric field is assumed to be uniform throughout "= ( —— — |sin® cos?, (15)
the cell. Though this is strictly valid only when the director & &

field is also uniform, it is an acceptable simplification for the

comparison between the dilution and the classical model

that we aim at establishing here for weak anchoring. 9'(0)=0. (16)
Equation(10a shows how the usual Rapini-Papoular sur-

face energy is being diluted. Here we treat in detail only theThis condition, which in a more general setting is to require

special case wheré,=0 andd.= m/2, but the conclusions the normal gradient of the director field to vanish on the

we reach are also valid in a more general setting. The electribounding surface, is a direct consequence of the dilution:

torque would orient along the normalr to the bounding localized torque is transmitted at the boundary.

plate, whereas the surface torque would orianat right Equation(15) subject to both Eqs.14) and Eq.(16) al-

angles withw. Away from the plate, the former torque pre- ways has the trivial solutio= /2, which corresponds to

gnd the natural boundary condition at the plate,
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the complete anchoringreaking The problem then arises 1

whether there is any other equilibrium solution for which the g'=—d (21

anchoring is not completely broken, as one would expect h

when the electric field is not too strong. For any diluted

surface potentiaky’ vanishes both on the plate and at infin- with initial conditionsg(0)=0 andg’(0)=0. By inserting
ity. Therefore, for a nontrivial equilibrium solution to exist, the right-hand side of Eq20) into Eq.(19), and using Egs.
9"(z) must possess an isolated zero, which results in afl8g and(18c), we readily obtain

inflection point for the director profile. Letting, be the

coordinate of this point, we readily see from E5) that it £ 2n2 o
satisfies —Z +—Zsin2 ﬂof d'gdz=0. (22
& & 0
&
d(z)= ? Use of Eq.(21) and repeated integrations by parts give Eq.
€ (22) the form
Thus, for a decreasing dilution functiahthere is only the
trivial equilibrium solution whenever &l L\2
SII’]2 002?2 - (23)
& h2gZ2 |\ &e
d(0)<=—. a7
&e because, by Eqs5) and (18b),

We will discuss this condition in the following section,
where we arrive at a more accurate value of the saturation
field by estimating(0) for all possible solutions of Eq.
(15).

H 72_1 H —
lim g —? and limdg=0.

Z— Z—

Equation(23) is the desired estimate for the orientation of
IV. SURFACE ORIENTATION the nematic director at the bounding plate in terms of the

The main objective of this section is to find a broad class2PPlied field. Since Eq23) must hold for all nontrivial equi-
of dilution functions within which the breaking of a weak lIPrium solutions, whenever its right-hand side exceeds 1
anchoring could be expressed by one and the same genefdfre cannot be any. Thus, the anchoring is completely bro-

condition. We consider the class of functions that satisfy KEN as soon as

lim d(z)=0, (189 &
z—® §e$ F =L, (24)
lim zd(z)=0, (18b)
70 which, by Eq.(13), immediately leads to a critical value of
the electric field. This being a sufficient condition, it is in-
|[d’'(z2)|<sM V z=0, (189  deed a better estimate than the one given by (E@). It is

usually also much sharper, since a decreasing dilution func-
and we show that it is indeed fit for this purpose. For theseion d obeys Eq.(6), and so the threshold faf, by Eq.(17)
functions it is possible to estimate the director orientation avould be only2&.. By contrast, Eq(24) predicts that the
the boundary in the limit wheré/L=h?/¢2<1 andd(0)  anchoring is already broken by the weaker field Wit L.

> ¢2/¢2 . First, we multiply both sides of Eq15) by 9’ and In principle, this condition for the anchoring breaking is
then integrate over the whole positive real line. By Egs.valid whenh/L—0. We checked that it is also a reliable
(14b) and(16), we thus arrive at estimate for the critical electric field whénis comparable to
L by computing numerically the nontrivial solutions of Eq.
55 w cosd(z)\? (15) subject to Eqs(14) and (16) for the dilution functions
?—d(0)=f0 d’(2) oSy ) dz, (19 dy(2)=exp(-zh) and d,(z)=2[h/(z+h)]3, the latter of
e

which represents the nonretarded van der Waals potential. As
can be seen from Fig. 1, the critical field is well predicted by
Eq. (24) for both dilution functions.

When the applied field fails to be at right angles with the
preferred orientation for the surface director, that is, when
Je# /2 in EQ. (10b), all equilibrium solutions are not
trivial. Moreover, precisely the same reasoning that led us to
Eq. (23) now yields

where we have sely:=37(0).

We now make use again of E(L5) to compute all de-
rivatives of 9 atz=0, and so obtain a Taylor expansion for
the functionz— cosd(2); the sum of this series, with the aid
of Eq. (18), can also be estimated as follows:

2

h 2
=1— ?(sinz 90)9(2)+0

h
? , (20)

S

cosd(2z)
cosdy

( L)Z_cos2 ¥ SIr? d, 29

whereg is the solution to the differential equation e/ si(9o—De)
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I d(2) = exp(l—z/hg (e}
dizy=2(h/(z+h))* A

2.5 B

g/L 2 - 9
15 il
d(z) = exp(—2/h) ——
Rapini-Papoular ———
1 1 1 L 1 Al /6 I 1
] 5 10 15 20 25 0 50 100 150
L/ z/h

FIG. 1. Values of the electrical coherence length computed nu- FIG. 2. Comparison between the localized Rapini-Papoular an-
merically at the saturation field for different dilution functions. By choring and an exponentially diluted surface potential with
Eq. (24), the critical value of, is L. Though this estimate is valid = 50h andL=25h. The director profiles are quite similar on a large
only for large values ok /h, it also yields satisfactory results when scale and differ only in the boundary layer whereh.
this ratio is close to 1.
L/&é.+tanhz/ &,

1+ (L/é)tanhz/ &)

Hz)=sin ! (28

whence it follows that for every, there are two values of
U9, one smaller and the other larger thég, which eventu-
ally coalesce taj, as &.—o; for the energy minimizerd,  In Fig. 2 two director profiles are compared: one is obtained
<. from an exponential dilution lavd(z) =exp(—z/h) and the
other is described by E@28); both correspond to the same
V. CLASSICAL WEAK ANCHORING extrapolation length. = 25h and the same electric coherence
. o length ¢£.=50h. If the profile obtained with the Rapini-
We have seen that the details of the dilution law play nopapoular boundary condition is shifted to the right by an
role in the anchoring breaking. We now compare the Outamount of about, it is seen nearly to coincide with the
comes of the dilution model to those known for the classicalyfile found with the diluted potential. In this sense, the
model of Rapini and Papoular. We shall see that the tWaharp houndary is replaced by a thin boundary layer where

models predict the same saturation field, though the former igye girector, starting with?’ (0)=0, is almost constar(see
richer in details because it also describes the nematic orierrjg 3,

tation within the surface layer. Likewise, when &< 9.< /2, Eq.(25) is still the condi-
In the Rapini-Papoular model, fof.= /2 the energy tjon for the anchoring breaking, and the equilibrium director
functional is profile has the representation

H(2)=0— 2 tan Y exp —z/é)tan3(Fe— 99)],

(9')%+ gilzscos2 ﬂ)dz

F[¥] N in? 9 +F

= —|—Si
2L " Jo
(26)  wheredy is the smallest root of Eq25).

where againd,=9(0), so that the equilibrium equation
reads like Eq(15) without the first term on the right-hand
side. Moreover, the boundary conditi¢h6) at z=0 is re- In [7] a diluted surface model was introduced to describe
placed by the following: the dynamics of nematic liquid crystals close to a bounding

plate. Here, to relate this model to the classical weak anchor-

VI. CONCLUSIONS

L9’ (0)=sindq cosdy, (27

whereas Eq(14) still applies, so that neithefy nor 9'(0)
can vanish in a nontrivial equilibrium solution. As an imme-
diate consequence, since haderanges in[0,7/2] on the s 1 4
whole cell, 4" is everywhere negative, and so the entire di-
rector profile is concave. A nontrivial solution of the equi-
librium equation also satisfies

3

d(z) = exp(—z/h) ——
1 . Rapini-Papc?ular ——
¥ =—cos?, R-P shifted
ée /6 b 1 1 1 I I 1 1 |
0 1 2 3 4 5 6 7 8 9 10

which combined with Eq(27) leads again to Eq23), and so It

condition (24) for the anchoring breaking remains un-  FIG. 3. Enlargement of the director profiles shown in Fig. 2.
changed. Moreover, the nontrivial solution takes the follow-The dotted line represents the Rapini-Papoular profile shifted in-
ing well-known explicit form: ward: it matches the dilution profile away from the boundary layer.
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ing, we considered the effects of a diluted surface potential ACKNOWLEDGMENT
on static director fields. We found that the predictions of the
dilution model are indeed similar to those obtained from the . .
established Rapini-Papoular model, though this latter cannot'd discussion.
access the details of the boundary layer introducedin

A characteristic dilution length was defined in terms of
the surface pOtential that describes how the action of the Here we prove |nequa||t>(6) First, reca” Jensen’s in-
surface is extended into the bulk. It has been shown that thequality, which states that for a convex functidnand a
actual shape of the dilution potential has little influence onyon-negative weight functiop=0
the key features of the director orientation: in the limit where

The authors thank G. Durand for more than one stimulat-

APPENDIX

the surface dilution length is small compared to the surface b b

extrapolation length, the orientation at the boundary in the Ja f(z)p(2)dz JaCID(f(z))p(z)dz
presence of an external field is independent of the dilution ) ; < -

law: it is a function of the field coherence length and the f p(2)dz f p(2)dz
surface extrapolation length alone. Moreover, the same sur- a a

face orientation is also found within the Rapini-Papoular o ) ) ) )

model. Indeed, the whole director profile predicted with a !f the dilution functionD is decreasing monotonically, we

localized surface energy can be recovered from a profiléan sét

computed with a diluted potential when the latter is shifted

toward the boundary by an amount of roughly the dilution

length h. In this way the rigid boundary plate is effectively gng with

replaced by a thin boundary layer where the director profile

is almost uniform. ®(u)=u? and f(z)=z
From a mathematical point of view, the boundary condi- ) o

tion is reduced to the requirement that the normal gradient ofensen’s inequality yields

the director vanishes at the boundary, while the action of the " "

surface is born by a bulklike term in the equilibrium differ- —J z°D'(z)dz —f zD'(2)dz

ential equation. This approach is easily extended to surface 0 0

dynamics, while in statics it is compatible with the classical o o

Rapini-Papoular model. In a forthcoming paper we address - JO D'(2)dz - fo D’(z)dz

the dynamical aspects of this model and compare its out-

comes to those expected within the model proposei8In  whence we arrive via integrations by parts at

where the Rapini-Papoular boundary coupling is the starting )

point for a surface balance equation bearing a phenomeno- * 1/ (=

logical surface viscosity. We shall see that the agreement D(O)fo ZD(Z)dZ?E( fo D(z)dz) :

between nondilution and dilution models found in statics is

soon to be spoiled in dynamics: the first signs of clash ar&his, by Eqs.(2)—(4), reads asl(0)=1/2, which is the de-

p:_D,1

2

=

already announced ifl5]. sired result.
[1] A. Rapini and M. Papoular, J. Phy@®arig, Collog. 30, C4-54 Sci. 57, 403(1976.
(1969. [9] E. Dubois-Violette and P. G. De Gennes, J. Phygance
[2] S. Pikin, G. Ryschenkow, and W. Urbach, J. Ph{&ari9 37, Lett. 36, L255 (1975.
241(1976. [10] A. L. Alexe-lonescu, R. Barberi, J. J. Bonvent, and M.
[3] A. I. Derzhanski and A. G. Petrov, Acta Phys. Pol5B, 747 Giocondo, Phys. Rev. B4, 529 (1996.
(1979. . [11] P. I. C. Teixeira, Phys. Rev. B5, 2876(1997.
[4] A. Mertelj and M. @pic, Phys. Rev. Lett81, 5844(1998. [12] G. E. Durand, A. M. Sonnet, and E. G. Virganpublishedl
[5] I. Dozov, M. Nobili, and G. Durand, Appl. Phys. Leff0, [13] C. W. Oseen, Trans. Faraday S@6, 883 (1933.
1179(1997. [14] F. C. Frank, Trans. Faraday S&5, 19 (1958.

[6] I. Dozov and G. Durand, Liquid Crystals Tod&y 1 (1998.
[7] G. E. Durand and E. G. Virga, Phys. Rev5H, 4137(1999.
[8] E. Dubois-Violette and P. G. De Gennes, J. Colloid Interface

[15] E. G. Virga, inProceedings of ICIAM9%edited by J. M. Ball
and J. C. R. HuntOxford University Press, Oxford, 20R0



