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Dilution of nematic surface potentials: Statics

André M. Sonnet and Epifanio G. Virga
Dipartimento di Matematica, Istituto Nazionale di Fisica della Materia, Universita` di Pavia, Via Ferrata 1, I-27100 Pavia, Italy

~Received 26 July 1999; revised manuscript received 8 December 1999!

The weak anchoring of a nematic liquid crystal is further illuminated by studying the consequences of
finite-range surface torques. It is shown that the actual decay law of a diluted surface potential has little
influence on either the equilibrium profile and the saturation field, provided that the range of the potential is
small compared to the surface extrapolation length. This appears as a possible way to extend the conventional
Rapini-Papoular model without altering its predictions away from the boundary. The net advantage of a
dilution model is to better understand surface phenomena, which indeed pertain to a thin boundary layer.

PACS number~s!: 61.30.2v, 68.10.Cr
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I. INTRODUCTION

Surface anchoring of nematic liquid crystals plays an i
portant role in both the statics and dynamics in the bu
Thus, it is no wonder that it was studied rather early@1#, and
both the strength of the surface potential and its depende
on the director orientation at a bounding surface have b
determined experimentally. A phenomenological model
the dynamic evolution at the surface has also been prop
@2,3#, which introduces asurface viscosityas the product of a
typical bulk viscosity times asurface length. The interest in
these topics has been renewed by some recent experim
Measurements indeed yielded estimates for both the sur
viscosity and the corresponding surface length@4#; however,
they are inconsistent with the fast switching times that se
to be involved in a surface bistable device@5,6#.

In an attempt to explain the experimental evidence and
justify the phenomenological surface viscosity, a hydrod
namic model has been put forward, based on the idea
surface actions are diluted in a thin boundary layer@7#. This
allows one to treat surface effects within a continuum theo
where the surface viscosity results from a dissipation proc
of the bulk, though mainly localized near the bounding s
faces. According to this model, the phenomenological s
face length is actually comparable to the thickness of
boundary layer.

Several specific aspects of finite-range surface poten
have already been studied in the past. For example, the r
of combining a van der Waals interaction with a localiz
torque has been explored, both when these interactions f
the same orientation@8# and when they compete with on
another @9#. Different specific long-range potentials hav
been considered, such as the one in@10#, and a density func-
tional approach has also shown that deviations from uni
ality close to the surface can be of importance@11#. These
contributions, however, all being special in some way, do
reveal any general aspect that different diluted surface po
tials could have in common.

In this paper we aim at a general description of surfa
potentials, which may include both short- and long-ran
contributions. We are concerned with the consequence
introducing such potentials within the classical direc
theory, and less so with a specific microscopic motivation
the interactions behind them. As in@7#, we disregard any
PRE 611063-651X/2000/61~5!/5401~6!/$15.00
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degree of biaxiality, and we take the scalar order param
as constant throughout the material. After describing the g
eral form of surface potentials, we essentially focus attent
on long-range interactions in the case of weak anchor
This amounts to requiring the surface extrapolation lengtL
to be much larger than the dilution lengthh defined in terms
of the ~arbitrary! decay law for the surface torques in th
bulk. In this setting, a surface layer can be clearly identifi
whose thickness is comparable withh. Thus, thead hoc
boundary layer introduced in@7# turns out to be fully justi-
fied.

The existence of this surface layer with its own dynam
is the main interest of this approach. The dilution mod
indeed deploys its full potential in dynamics, to which
future paper@12# will be entirely devoted, but it also raises
few central issues in statics, which need to be resolved
make this theory well grounded. We wonder, in particul
whether the effects of a surface potential are independen
the details of the decay law. To explore this, we conside
semi-infinite liquid crystal cell subject to different surfac
potentials in a broad class. We find that for weak anchori
that is, whenh/L!1, the orientation at the surface and th
saturation field strength are independent of the actual d
tion law. In this case, our results coincide with those alrea
found within the classical Rapini-Papoular model. The ve
novelty here is that a whole class of dilution laws are ac
ally consistent with the old model, for which all surface e
fects are sharply localized. The differences between th
models become significant only in the thin boundary lay
whenever this matters, the classical model is simply not
plicable.

Here is the outline of this paper. In Sec. II, both the d
luted potential and the dilution length are defined. In Sec.
the Euler-Lagrange equation for a semi-infinite cell in
external field is derived along with the appropriate bound
condition on the supporting plate. In Sec. IV, we obtain
approximate expression for the boundary orientation, wh
is independent of the actual shape of the dilution function
the case where the preferred surface direction and the e
nal field are at right angles, this also allows us to estimate
saturation field, that is, the electric field required to com
pletely break the surface anchoring. Numerical results o
tained for both an exponential dilution law and a van d
Waals surface potential show that this estimate is valid e
5401 ©2000 The American Physical Society
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5402 PRE 61ANDRÉ M. SONNET AND EPIFANIO G. VIRGA
when h is comparable toL. In Sec. V, we show that the
model of surface anchoring studied in this paper prope
extends the classical model of Rapini and Papoular. To e
the comparison, we briefly recall both the equilibrium equ
tion and the boundary condition used in that model to
scribe the same problem addressed here. We show tha
saturation field remains unchanged, whereas the equilibr
configuration within the surface layer is simply inaccessib
In the last section we collect the main conclusions reache
this paper.

II. SURFACE ENERGY

We consider a nematic liquid crystal in the half spacez
>0 with a single wall atz50. The influence of the surface i
thought of as being diluted in a thin layer adjacent to
boundary. The surface free energy per unit area is then g
the form

Fs5
1
2 E

0

`

D~z!F„n~z!•ns…dz, ~1!

wheren denotes the nematic director,ns is a given unit vec-
tor indicating a preferred direction of the surface,F is a
scalar-valued function representing the dependence of
energy on the orientation, andD(z) is the strength of the
surface potential at the point with coordinatez relative to the
anchoring wall. We assume thatF is so normalized as to
range in the interval@0,1#. In the following we restrict the
director to a plane perpendicular to the anchoring plate
that the orientation can be described by a single angleq
~specifically, the angle thatn makes with the plate!, and we
set F(n•ns)5: f (q). For example, f (q)5sin2(q2qs),
whereqs is the preferred angle at the boundary.

Starting from Eq.~1!, one can define a total strengthA of
the anchoring by lettingF[1:

AªE
0

`

D~z!dz; ~2!

accordingly, a characteristicdilution lengthis given by

hª

E
0

`

zD~z!dz

E
0

`

D~z!dz

. ~3!

With these definitions the surface energy can be rewritten

Fs5
A

2h E0

`

d~z! f „q~z!…dz,

where

d~z!ª
h

A
D~z! ~4!

is the dimensionlessdilution functionthat satisfies

E
0

`

d~z!dz5h. ~5!
y
se
-
-
the
m
.
in

e
en

he

o

as

Furthermore, wheneverd is a decreasing function, it als
obeys

d~0!> 1
2 . ~6!

~See the Appendix for a formal proof.!
It should be noted that the usual localized potential

recovered in this setting by taking a Dirac delta distributi
as dilution function:D(z)5Ad(z). The surface energy the
becomesFs5(A/2) f „q(0)…, and the dilution lengthh van-
ishes; accordingly, the common surface extrapolation len
L is defined as

Lª
K

A
. ~7!

We shall see below that this definition also makes sense
a diluted potential.

In general, we consider smooth distributions of surfa
torques in the volume: for a given total strengthA, the cor-
responding dilution lengthh measures the thickness of th
boundary layer where the surface torques are effectively c
fined. We regardh throughout as small compared toL. As
shown below, under this assumption the main outcomes
our model are independent of the specific details of the d
tion function.

As an example, we rephrase in this general setting on
the specific models already proposed in the literatu
Dubois-Violette and De Gennes considered in@8# a nematic
liquid crystal separated from the supporting substrate b
layer of a vitreous polymer of thicknessa, which occupies
the strip2a<z<0. The substrate exerts on the nematic
rector a van der Waals torque with strengthD that decays
according to the law

D~z!5
Cl

~l1a1z!~z1a!3
,

whereC is a constant depending on the dielectric consta
of the substrate, the liquid crystal, and the medium betw
them, whilel is a characteristic length that can be estima
from the ratio between the nonretarded and retarded van
Waals potentials. It is further assumed in@8# that the pre-
ferred orientation at the boundary isqs50 and the angular
dependence is given byf 5sin2 q. According to definition
~2!, we compute the total strengthA of this potential and
determine the corresponding extrapolation lengthL as

LC

Kl2
5

1

a2/22a1 ln~11a!
,

where aªl/a. This formula coincides with~3.6! of @8#,
which was obtained there from a different definition ofL,
based on an estimate of the asymptotic behavior of the s
tion to the equilibrium equation for the director field. Like
wise, we compute the dilution length

h5a
a2/21a2~11a!ln~11a!

a2/22a1 ln~11a!
, ~8!
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PRE 61 5403DILUTION OF NEMATIC SURFACE POTENTIALS: . . .
which is a strictly increasing function ofa, ranging froma/2
to a. No counterpart of Eq.~8! is present in@8#, because no
boundary layer was properly defined there, though th
were indirect indications of its existence. We remark that
the nonretarded potential considered in@8# the proper ex-
trapolation lengthL can also be defined as in Eq.~7!. How-
ever, the agreement between the two extrapolation len
fails in the case of strong anchoring, where the length
fined in @8# may even become negative. This corresponds
a virtual boundary platein the bulk, a case which need not b
treated here.

III. COMPETITION AGAINST A FIELD

To illustrate better the relevance to the Oseen-Frank e
librium theory of a model where the surface torques are
tually diluted in space, we study a simple problem with se
eral possible applications, where an external electric fi
competes against the preferred anchoring at the wall. T
problem is well understood within the Rapini-Papou
model, and we recall the classical results below in Sec. V
compare them to our findings.

The Oseen-Frank elastic free-energy density for the n
atic director is given by@13,14#

W5 1
2 K1~“•n!21 1

2 K2@n•~“3n!#21 1
2 K3@n3~“3n!#2,

where K1 , K2, and K3 are the elastic constants for spla
twist, and bend deformations, respectively. If the directo
bound to a plane perpendicular to the plate, only splay
bend deformations are relevant. Since usuallyK1'K35:K,
we apply the one-constant approximation and reduceW to

W5
K

2
~“n!25

K

2
~q8!2 ~9!

with q the in-plane angle as defined in Sec. II and the pri
denoting differentiation with respect toz. The densities per
unit volume of both the surface energy and the electric
ergy are given by

Ws5
A

2h
d~z!sin2~q2qs! ~10a!

We5
«a

2
E2 sin2~q2qe!, ~10b!

respectively, where«a.0 is the dielectric anisotropy in S
units. The electric field is assumed to be uniform through
the cell. Though this is strictly valid only when the direct
field is also uniform, it is an acceptable simplification for t
comparison between the dilution and the classical mod
that we aim at establishing here for weak anchoring.

Equation~10a! shows how the usual Rapini-Papoular su
face energy is being diluted. Here we treat in detail only
special case whereqs50 andqe5p/2, but the conclusions
we reach are also valid in a more general setting. The ele
torque would orientn along the normaln to the bounding
plate, whereas the surface torque would orientn at right
angles withn. Away from the plate, the former torque pre
re
r
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vails over the latter, whereas close to the plate it fails to
so, provided that the surface anchoring is not so weak a
lose the nematic directorn.

By Eqs.~9! and~10!, the total free energyF of the system
can be written as

F @q#5 1
2 E

0

`S K~q8!21«aE2 cos2 q1
A

h
d~z!sin2 q Ddz

5
K

2 E
0

`S ~q8!21
1

je
2

cos2 q1
1

js
2

d~z!sin2 q D dz,

~11!

where two distinct coherence lengths have been introduc

jsªAKh

A
~12!

and

jeª
1

E
AK

«a
, ~13!

the former for the surface field and the latter for the elec
field. The surface extrapolation lengthL is found to be re-
lated tojs through

js
25Lh.

Here we takeh!L, which means that the anchoring on th
plate is sufficientlyweak. The three surface lengthsh, js ,
andL are then ordered as follows:h,js,L.

Any conceivable dilution function has to decay to 0
infinity so as to be integrable over the whole half linez>0.
Moreover, for the energy functionalF in Eq. ~11! to be fi-
nite, q must obey both asymptotic conditions

lim
z→`

q~z!5
p

2
~14a!

lim
z→`

q8~z!50. ~14b!

On the other hand, since no anchoring is actually conc
trated atz50, no condition forq can either be requeste
there.

Calculating the first variation ofF only subject to Eqs.
~14! yields both the Euler-Lagrange equation,

q95S d~z!

js
2

2
1

je
2D sinq cosq, ~15!

and the natural boundary condition at the plate,

q8~0!50. ~16!

This condition, which in a more general setting is to requ
the normal gradient of the director field to vanish on t
bounding surface, is a direct consequence of the dilutionno
localized torque is transmitted at the boundary.

Equation~15! subject to both Eqs.~14! and Eq.~16! al-
ways has the trivial solutionq[p/2, which corresponds to
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the complete anchoringbreaking. The problem then arise
whether there is any other equilibrium solution for which t
anchoring is not completely broken, as one would exp
when the electric field is not too strong. For any dilut
surface potential,q8 vanishes both on the plate and at infi
ity. Therefore, for a nontrivial equilibrium solution to exis
q9(z) must possess an isolated zero, which results in
inflection point for the director profile. Lettingz0 be the
coordinate of this point, we readily see from Eq.~15! that it
satisfies

d~z0!5
js

2

je
2

.

Thus, for a decreasing dilution functiond there is only the
trivial equilibrium solution whenever

d~0!<
js

2

je
2

. ~17!

We will discuss this condition in the following section
where we arrive at a more accurate value of the satura
field by estimatingq(0) for all possible solutions of Eq
~15!.

IV. SURFACE ORIENTATION

The main objective of this section is to find a broad cla
of dilution functions within which the breaking of a wea
anchoring could be expressed by one and the same ge
condition. We consider the class of functions that satisfy

lim
z→`

d~z!50, ~18a!

lim
z→`

zd~z!50, ~18b!

ud8~z!u<M ; z>0, ~18c!

and we show that it is indeed fit for this purpose. For the
functions it is possible to estimate the director orientation
the boundary in the limit whereh/L5h2/js

2!1 and d(0)
@js

2/je
2 . First, we multiply both sides of Eq.~15! by q8 and

then integrate over the whole positive real line. By E
~14b! and ~16!, we thus arrive at

js
2

je
2

2d~0!5E
0

`

d8~z!S cosq~z!

cosq0
D 2

dz, ~19!

where we have setq0ªq(0).
We now make use again of Eq.~15! to compute all de-

rivatives ofq at z50, and so obtain a Taylor expansion f
the functionz° cosq(z); the sum of this series, with the ai
of Eq. ~18!, can also be estimated as follows:

cosq~z!

cosq0
512

h2

js
2 ~sin2 q0!g~z!1oS h2

js
2D , ~20!

whereg is the solution to the differential equation
ct

n

n

s

ral

e
t

.

g95
1

h2
d ~21!

with initial conditionsg(0)50 andg8(0)50. By inserting
the right-hand side of Eq.~20! into Eq. ~19!, and using Eqs.
~18a! and ~18c!, we readily obtain

js
2

je
2

1
2h2

js
2

sin2 q0E
0

`

d8gdz50. ~22!

Use of Eq.~21! and repeated integrations by parts give E
~22! the form

sin2 q05
js

4

h2je
2

5S L

je
D 2

~23!

because, by Eqs.~5! and ~18b!,

lim
z→`

g825
1

h2
and lim

z→`

dg50.

Equation~23! is the desired estimate for the orientation
the nematic director at the bounding plate in terms of
applied field. Since Eq.~23! must hold for all nontrivial equi-
librium solutions, whenever its right-hand side exceeds
there cannot be any. Thus, the anchoring is completely b
ken as soon as

je<
js

2

h
5L, ~24!

which, by Eq.~13!, immediately leads to a critical value o
the electric field. This being a sufficient condition, it is in
deed a better estimate than the one given by Eq.~17!. It is
usually also much sharper, since a decreasing dilution fu
tion d obeys Eq.~6!, and so the threshold forje by Eq. ~17!
would be onlyA2js . By contrast, Eq.~24! predicts that the
anchoring is already broken by the weaker field withje5L.

In principle, this condition for the anchoring breaking
valid when h/L→0. We checked that it is also a reliab
estimate for the critical electric field whenh is comparable to
L by computing numerically the nontrivial solutions of E
~15! subject to Eqs.~14! and ~16! for the dilution functions
d1(z)5exp(2z/h) and d2(z)52@h/(z1h)#3, the latter of
which represents the nonretarded van der Waals potentia
can be seen from Fig. 1, the critical field is well predicted
Eq. ~24! for both dilution functions.

When the applied field fails to be at right angles with t
preferred orientation for the surface director, that is, wh
qeÞp/2 in Eq. ~10b!, all equilibrium solutions are no
trivial. Moreover, precisely the same reasoning that led u
Eq. ~23! now yields

S L

je
D 2

5
cos2 q0 sin2 q0

sin2~q02qe!
, ~25!
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whence it follows that for everyje there are two values o
q0, one smaller and the other larger thanqe , which eventu-
ally coalesce toqe as je→`; for the energy minimizerq0
,qe .

V. CLASSICAL WEAK ANCHORING

We have seen that the details of the dilution law play
role in the anchoring breaking. We now compare the o
comes of the dilution model to those known for the classi
model of Rapini and Papoular. We shall see that the
models predict the same saturation field, though the forme
richer in details because it also describes the nematic or
tation within the surface layer.

In the Rapini-Papoular model, forqe5p/2 the energy
functional is

F @q#5
K

2 F 1

L
sin2 q01E

0

`S ~q8!21
1

je
2 cos2 q DdzG ,

~26!

where againq05q(0), so that the equilibrium equation
reads like Eq.~15! without the first term on the right-han
side. Moreover, the boundary condition~16! at z50 is re-
placed by the following:

Lq8~0!5sinq0 cosq0 , ~27!

whereas Eq.~14! still applies, so that neitherq0 nor q8(0)
can vanish in a nontrivial equilibrium solution. As an imm
diate consequence, since hereq ranges in@0,p/2# on the
whole cell,q9 is everywhere negative, and so the entire
rector profile is concave. A nontrivial solution of the equ
librium equation also satisfies

q85
1

je
cosq,

which combined with Eq.~27! leads again to Eq.~23!, and so
condition ~24! for the anchoring breaking remains u
changed. Moreover, the nontrivial solution takes the follo
ing well-known explicit form:

FIG. 1. Values of the electrical coherence length computed
merically at the saturation field for different dilution functions. B
Eq. ~24!, the critical value ofje is L. Though this estimate is valid
only for large values ofL/h, it also yields satisfactory results whe
this ratio is close to 1.
o
t-
l
o
is
n-

-

-

q~z!5sin21S L/je1tanhz/je

11~L/je!tanhz/je
D . ~28!

In Fig. 2 two director profiles are compared: one is obtain
from an exponential dilution lawd(z)5exp(2z/h) and the
other is described by Eq.~28!; both correspond to the sam
extrapolation lengthL525h and the same electric coheren
length je550h. If the profile obtained with the Rapini
Papoular boundary condition is shifted to the right by
amount of abouth, it is seen nearly to coincide with th
profile found with the diluted potential. In this sense, t
sharp boundary is replaced by a thin boundary layer wh
the director, starting withq8(0)50, is almost constant~see
Fig. 3!.

Likewise, when 0,qe,p/2, Eq. ~25! is still the condi-
tion for the anchoring breaking, and the equilibrium direc
profile has the representation

q~z!5qe22 tan21@exp~2z/je!tan 1
2 ~qe2q0!#,

whereq0 is the smallest root of Eq.~25!.

VI. CONCLUSIONS

In @7# a diluted surface model was introduced to descr
the dynamics of nematic liquid crystals close to a bound
plate. Here, to relate this model to the classical weak anc

- FIG. 2. Comparison between the localized Rapini-Papoular
choring and an exponentially diluted surface potential withje

550h andL525h. The director profiles are quite similar on a larg
scale and differ only in the boundary layer wherez<h.

FIG. 3. Enlargement of the director profiles shown in Fig.
The dotted line represents the Rapini-Papoular profile shifted
ward: it matches the dilution profile away from the boundary lay
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5406 PRE 61ANDRÉ M. SONNET AND EPIFANIO G. VIRGA
ing, we considered the effects of a diluted surface poten
on static director fields. We found that the predictions of
dilution model are indeed similar to those obtained from
established Rapini-Papoular model, though this latter can
access the details of the boundary layer introduced in@7#.

A characteristic dilution length was defined in terms
the surface potential that describes how the action of
surface is extended into the bulk. It has been shown that
actual shape of the dilution potential has little influence
the key features of the director orientation: in the limit whe
the surface dilution length is small compared to the surf
extrapolation length, the orientation at the boundary in
presence of an external field is independent of the dilut
law: it is a function of the field coherence length and t
surface extrapolation length alone. Moreover, the same
face orientation is also found within the Rapini-Papou
model. Indeed, the whole director profile predicted with
localized surface energy can be recovered from a pro
computed with a diluted potential when the latter is shift
toward the boundary by an amount of roughly the diluti
lengthh. In this way the rigid boundary plate is effective
replaced by a thin boundary layer where the director pro
is almost uniform.

From a mathematical point of view, the boundary con
tion is reduced to the requirement that the normal gradien
the director vanishes at the boundary, while the action of
surface is born by a bulklike term in the equilibrium diffe
ential equation. This approach is easily extended to sur
dynamics, while in statics it is compatible with the classic
Rapini-Papoular model. In a forthcoming paper we addr
the dynamical aspects of this model and compare its
comes to those expected within the model proposed in@3#,
where the Rapini-Papoular boundary coupling is the star
point for a surface balance equation bearing a phenom
logical surface viscosity. We shall see that the agreem
between nondilution and dilution models found in statics
soon to be spoiled in dynamics: the first signs of clash
already announced in@15#.
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APPENDIX

Here we prove inequality~6!. First, recall Jensen’s in
equality, which states that for a convex functionF and a
non-negative weight functionp>0

FS E
a

b

f ~z!p~z!dz

E
a

b

p~z!dz
D <

E
a

b

F„f ~z!…p~z!dz

E
a

b

p~z!dz

.

If the dilution functionD is decreasing monotonically, w
can set

p52D8,

and with

F~u!5u2 and f ~z!5z

Jensen’s inequality yields

2E
0

`

z2D8~z!dz

2E
0

`

D8~z!dz

>S 2E
0

`

zD8~z!dz

2E
0

`

D8~z!dz
D 2

,

whence we arrive via integrations by parts at

D~0!E
0

`

zD~z!dz>
1

2 S E
0

`

D~z!dzD 2

.

This, by Eqs.~2!–~4!, reads asd(0)>1/2, which is the de-
sired result.
.
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